Improving subway services in New York with a Google and MTA collaboration

The New York City Metropolitan Transportation Authority (MTA) has partnered with Google for a groundbreaking pilot project designed to enhance the dependability of its outdated subway network. Utilizing Google’s smartphone technology, this initiative aims to detect and resolve track problems proactively to prevent service interruptions. Called “TrackInspect,” the program marks a major advancement in incorporating artificial intelligence and contemporary technology into public transportation.

La iniciativa piloto, que inició en septiembre de 2024 y finalizó en enero de 2025, consistió en equipar algunos vagones del metro con teléfonos Google Pixel. Estos dispositivos se encargaron de recolectar datos de audio y vibración para identificar posibles fallas en las vías. Luego, la información fue evaluada a través de los sistemas de inteligencia artificial en la nube de Google, los cuales señalaban las zonas que necesitaban una revisión más detallada por parte del personal de la MTA.

“By spotting initial indicators of track deterioration, we not only cut down on maintenance expenses but also lessen inconveniences for passengers,” stated Demetrius Crichlow, president of New York City Transit, in an announcement made public in late February.

The collaboration between the MTA and Google forms a component of a larger initiative to update New York City’s 120-year-old subway system, which still confronts issues due to its outdated infrastructure and regular delays. Although the pilot program yielded encouraging outcomes, doubts persist about the potential expansion of TrackInspect, considering the financial limitations the MTA is experiencing.

Addressing delays through AI and smartphones

New York City’s commuters frequently encounter subway delays as a recurring issue. Towards the end of 2024, the MTA disclosed that tens of thousands of delays were occurring monthly, with December alone surpassing 40,000 incidents. These interruptions stem from multiple causes, such as track problems, construction activities, and crew shortages.

The TrackInspect initiative focuses on tackling a crucial element of the problem: pinpointing and correcting mechanical issues before they worsen. Throughout the pilot phase, six Google Pixel smartphones were placed in four R46 subway cars, recognizable by their unique orange and yellow seats. These devices captured 335 million sensor readings, more than one million GPS points, and 1,200 hours of audio data.

Los teléfonos inteligentes se colocaron estratégicamente tanto dentro como debajo de los vagones del metro. Los dispositivos externos estaban equipados con micrófonos para captar sonidos y vibraciones, mientras que los internos tenían los micrófonos desactivados para evitar grabar conversaciones de los pasajeros. En cambio, estos dispositivos se concentraban únicamente en las vibraciones para identificar anomalías en las vías.

Rob Sarno, serving as an assistant chief track officer for the MTA, was integral to the project. His duties involved examining audio clips that the AI system flagged for potential track issues. “The system pinpoints zones with unusual decibel levels, possibly signaling loose joints, damaged rails, or other defects,” Sarno elaborated.

La línea de tren A, seleccionada para el piloto, presentó un entorno de prueba variado con vías tanto subterráneas como elevadas. Además, incluyó segmentos de infraestructura recientemente construida, ofreciendo un punto de referencia para comparaciones. Aunque no todos los retrasos en la línea A se deben a problemas mecánicos, los datos recopilados durante el programa piloto podrían contribuir a resolver problemas recurrentes y mejorar el servicio en general.

The A train line, chosen for the pilot, offered a diverse testing environment with both underground and above-ground tracks. It also included sections of recently constructed infrastructure, providing a baseline for comparison. While not all delays on the A line are caused by mechanical issues, the data captured during the pilot could help address recurring problems and improve overall service.

The TrackInspect initiative produced promising results, as the AI system accurately identified 92% of defect locations that were confirmed by MTA inspectors. Sarno estimated his own accuracy rate in anticipating track defects from audio data to be approximately 80%.

The initiative also featured an AI-driven tool based on Google’s Gemini model, enabling inspectors to inquire about maintenance procedures and repair records. This conversational AI furnished inspectors with straightforward, actionable insights, which further streamlined the maintenance workflow.

Despite its achievements, the pilot program brings up questions concerning its scalability and expenses. The MTA has not revealed the potential cost of deploying TrackInspect throughout its entire subway network, which comprises 472 stations and accommodates over one billion riders each year. The agency is also facing financial difficulties, requiring billions of dollars to finish ongoing infrastructure projects.

La participación de Google en el piloto formó parte de una iniciativa de prueba de concepto desarrollada sin costo para la MTA. Sin embargo, ampliar el programa probablemente requeriría una inversión considerable, convirtiendo el financiamiento en un factor clave para los responsables de la toma de decisiones.

An increasing movement in transit advancements

La colaboración de Nueva York con Google forma parte de una tendencia más amplia en la que ciudades de todo el mundo están adoptando inteligencia artificial y tecnologías inteligentes para mejorar los sistemas de transporte público. Por ejemplo, New Jersey Transit ha utilizado IA para analizar el flujo de pasajeros y la gestión de multitudes, mientras que la Autoridad de Tránsito de Chicago ha implementado medidas de seguridad basadas en IA para detectar armas. En Pekín, se ha introducido la tecnología de reconocimiento facial como alternativa a los boletos de transporte tradicionales, disminuyendo los tiempos de espera en horas pico.

Google has previously worked with other transportation agencies. The tech company has created tools to optimize Amtrak’s scheduling and has teamed up with parking technology providers to incorporate street parking information into Google Maps. Nonetheless, the size and intricacy of New York’s subway system make this project especially ambitious.

Google itself has collaborated with other transportation agencies in the past. The tech giant has developed tools to enhance Amtrak’s scheduling and partnered with parking technology providers to integrate street parking data into Google Maps. However, the scale and complexity of New York’s subway system make this project particularly ambitious.

Looking forward

Looking ahead

While the TrackInspect pilot has ended, the MTA is exploring partnerships with other technology providers to further enhance its maintenance processes. The agency is also analyzing data from the pilot to determine its impact on reducing delays and improving service. Early indications suggest that certain types of delays, such as those caused by braking issues and track defects, decreased on the A line during the pilot period. However, the MTA cautions that further analysis is needed to confirm a direct link to the program.

For now, the pilot represents a promising step toward modernizing the MTA’s operations and addressing the challenges of an aging transit system. By combining the expertise of tech companies like Google with the experience of transit professionals, New York City may be able to deliver a more reliable subway experience for its millions of daily riders.

As Sarno reflects on the project, he emphasizes the potential of AI-driven solutions to transform public transportation. “This technology allows us to detect problems earlier, respond faster, and ultimately provide better service to our customers,” he said.

The MTA’s collaboration with Google underscores the potential of public-private partnerships to drive innovation in critical infrastructure. Whether TrackInspect becomes a permanent fixture in New York’s subway system remains to be seen, but its success highlights the possibilities of integrating cutting-edge technology into the daily lives of commuters.